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Interpretations of Quantum Mechanics
in Terms of Beable Algebras
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In terms of beable algebras Halvorson and Clifton [International Journal of Theoret-
ical Physics 38 (1999) 2441–2484] generalized the uniqueness theorem (Studies in
History and Philosophy of Modern Physics 27 (1996) 181–219] which characterizes
interpretations of quantum mechanics by preferred observables. We examine whether
dispersion-free states on beable algebras in the generalized uniqueness theorem can
be regarded as truth-value assignments in the case where a preferred observable is the
set of all spectral projections of a density operator, and in the case where a preferred
observable is the set of all spectral projections of the position operator as well.
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dispersion-free state; quantum mechanics.

1. INTRODUCTION

When ψ is a quantum mechanical state of a physical system, ψ gives the
probability that a measurement value of a physical quantity A is a. There have
been many discussions about whether we can interpret that there are hidden states
on which all observational propositions can be assigned truth-value, and that the
probability given by ψ is a probability measure on the set of all hidden states.
For example, von Neumann, and Jauch and Piron mathematically defined such
hidden states, and showed that there was no hidden state in quantum mechanics.
But they imposed the condition about incompatible observational propositions on
hidden states. Bell (2004) argued that it was not physically proper to impose this
condition on hidden states although this is proper to impose quantum mechanical
states (pp. 4–6). Then Bell (2004) defined the hidden state which was not imposed
the condition about incompatible observational propositions, and showed that there
was also no this hidden state in nonrelativistic quantum mechanics (pp. 6–8). In
Section 2. we will see the fact in detail.
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On the other hand, for any observable R there are truth-value assignments
to all propositions concerning R. Moreover, given any state ρ, ρ restricted to
the set of all propositions concerning R can be expressed as a weighted mixture
of truth-value assignments. Then the probability given by ρ restricted to the set
of all propositions concerning R can be regarded as a probability on the set of
all truth-value assignments, hence we can interpret this probability as the degree
of our ignorance. Moreover, under some conditions Bub and Clifton (1996) (see
also, Bub et al., 2000) determined the maximal set which contains all propositions
concerning R, and to which ρ is restricted in order to express as a mixture of
truth-value assignments. They called this theorem a uniqueness theorem and R a
preferred observable. They showed that each interpretation of quantum mechanics
uniquely corresponds to some preferred observable. For example, the Kochen–
Dieks modal interpretation corresponds to some density operator in the uniqueness
theorem.

Because the uniqueness theorem is proved in a finite-dimensional Hilbert
space, a position operator cannot be a preferred observable. Halvorson and Clifton
(1999) generalized the uniqueness theorem in terms of beable algebras whose
definition is given by them, so that we can adopt an observable which has a
continuous spectrum as a preferred observable. If the dimension of a Hilbert space
is finite, the results of the theorem proved by Halvorson and Clifton coincide with
those of the uniqueness theorem. Therefore, we call this theorem the generalized
uniqueness theorem in the present paper. When the dimension of a Hilbert space
is finite, dispersion-free states on beable algebras in the generalized uniqueness
theorem coincide with truth-value assignments in the original uniqueness theorem.
In Section 3. we will show that when the dimension of a Hilbert space is infinite,
there appear dispersion-free states which does not exist in a finite-dimensional
Hilbert space. Then we will point out that these dispersion-free states cannot be
regarded as truth-value assignments.

In Sections 3. and 4. we will examine whether dispersion-free states on
beable algebras in the generalized uniqueness theorem can be regarded as truth-
value assignments in the case where a preferred observable is the set of all spectral
projections of a density operator, and in the case where a preferred observable is
the set of all spectral projections of the position operator as well. In Section 3.
we will examine the case where a preferred observable is a density operator,
and present an interpretation in terms of only dispersion-free states which can
be regarded as truth-value assignments. In Section 4. we will examine the case
where a preferred observable is the set of all spectral projections of the position
operator, and point out that all dispersion-free states cannot be regarded as truth-
value assignments. Then we will present an interpretation that a physical object
exists at some point while dispersion-free states cannot be regarded as truth-value
assignments.



Interpretations of Quantum Mechanics in Terms of Beable Algebras 1143

2. THE GENERALIZED UNIQUENESS THEOREM

In this paper, we use the following notation. Let H denote a Hilbert space. If
K is a subset of H, let [K] denote its closed, linear span. If T is a closed subspace
of H, let PT denote the projection onto T and let B(T ) denote the set of all
bounded operators on T . For a vector x ∈ H, let Px denote the projection onto
[x]. If S is a subset of B(H), let S

′ denote {A ∈ B(H)|AB = BA for all B ∈ S}.

Definition 2.1. A linear functional ρ on a unital C*-algebra A is called a state if
ρ satisfies following conditions:

1. ρ(A∗A) ≥ 0 for any element A ∈ A;
2. ρ(I ) = 1.

Definition 2.2. A state ω on a unital C*-algebra A is called a dispersion-free
state if ω(A2) = [ω(A)]2 for any self-adjoint element A ∈ A.

Definition 2.3. A state ρ on a von Neumann algebra N is called a normal state if
there is a density operator D such that ρ(A) = tr(DA) for any operator A ∈ N.

Definition 2.4.: A finitely additive truth-value assignment A mapping µ of the
set of all projections in a unital C*-algebra A to {0, 1} is called a finitely additive
truth-value assignment on A if µ satisfies following conditions:

1. µ(I ) = 1;
2. For any mutually orthogonal projections P,Q ∈ A, µ(P ∨ Q) = µ(P ) +

µ(Q).

By Gleason’s theorem, the following lemma holds.

Lemma 2.1. Let H be a Hilbert space whose dimension is at least 3 and finite.
Then there is no finitely additive truth-value assignment on B(H).

Lemma 2.2. (Hamhalter, 1993, Lemma 5.1) Let N be a properly infinite von
Neumann algebra and let µ be a finitely additive truth-value assignment on N.
Then µ can be extended to a dispersion-free state on N.

We prove the following theorem, making reference to the proof of Lemma
19 of Doring (2004).

Theorem 2.1. Let N be a properly infinite von Neumann algebra. Then there is
no finitely additive truth-value assignment on N.
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Proof: Suppose that there is a finitely additive truth-value assignment µ on N.
By Lemma 2 µ can be extended to a dispersion-free state on N.

Since N is a properly infinite von Neumann algebra, there is a projection
Q in N such that for some partial isometry V ∈ N, Q = V V ∗ and Q⊥ = V ∗V
by Lemma 6.3.3 of Kadison and Ringrose (1997). By Lemma 2 of Misra (1967)
ω(Q) = ω(V V ∗) = ω(V )ω(V ∗) = ω(V ∗)ω(V ) = ω(V ∗V ) = ω(Q⊥). Since 1 =
ω(Q + Q⊥) = ω(Q) + ω(Q⊥), ω(Q) = 1/2. This contradicts that ω(Q) = 0 or
1. Therefore, there is no finitely additive truth-value assignment on N. �

If H is an infinite-dimensional Hilbert space, B(H) is a properly infinite von
Neumann algebra. Then by Lemma 2.1 and Theorem 2.1 we get the following
theorem.

Theorem 2.2. Let H be a Hilbert space which dimension is at least 3. Then there
is no finitely additive truth-value assignment on B(H).

Therefore, finitely additive truth-values cannot be assigned simultaneously
to all projections in quantum mechanics. Moreover, finitely additive truth-values
cannot be assigned to all projections which belong to each local algebra in al-
gebraic quantum field theory because any local algebra is a properly infinite von
Neumann algebra (Baumgartel, 1995, Corollary 1.11.6). But we do not deal with
interpretations of algebraic quantum field theory in the present paper (see e.g.
Clifton, 2000 and Kitajima, 2004).

For any state ρ on B(H), Halvorson and Clifton defined the C*-algebra on
which ρ can be expressed as a mixture of finitely additive truth-value assignments,
and called this C*-algebra a beable algebra after terminology due to Bell (see Bell,
2004, Chapters 5, 7, and 19).

Definition 2.5. (Halvorson and Clifton, 1999, p. 2447) Let A be a unital C*-
algebra, let B be a unital C*-subalgebra of A and let ρ be a state on A. B is a
beable algebra for ρ if and only if ρ|B is a mixture of dispersion-free states, that
is, if and only if there is a probability measure µ on the space S of dispersion-free
states on B such that

ρ(A) =
∫

S
ωs(A)dµ(s) (∀A ∈ B).

Halvorson and Clifton (1999) proved the following theorem in terms of beable
algebras.

Theorem 2.3. (Halvorson and Clifton, 1999, Theorem 4.5) Let D be a density
operator on H, let D be the range of D and let ρ be the state on B(H) such that
ρ(A) = tr(DA) for any operator A ∈ B(H). Let P be a set of mutually commuting
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self-adjoint operators and let S be [P′′D]. We call P a preferred observable. Let
B be a C*-subalgebra of B(H) and let B satisfy the following conditions:

1. B is a beable algebra for ρ;
2. P ⊆ B;
3. UBU ∗ = B for any unitary operator U ∈ B(H) such that U ∈ P

′ and
U ∈ {D}′;

4. B is a maximal with respect to conditions 1, 2 and 3.

Then B is B(S⊥) ⊕ N where N is a maximal Abelian von Neumann subalgebra
of (P ∪ {D})′′PS such that P

′′PS ⊆ N.

If H is a finite-dimensional Hilbert space and D is an one dimensional
projection, B is uniquely determined and the set of all projections in B coincides
with the set of definite projections in the original uniqueness theorem proved by
Bub and Clifton (1996) (see Halvorson and Clifton, 1999, Corollary 4.6(ii) and
Remark 4.7). Then we call Theorem 2.3 the generalized uniqueness theorem.

3. THE CASE WHERE A PREFERRED OBSERVABLE IS THE SET
OF ALL SPECTRAL PROJECTIONS OF A DENSITY OPERATOR

In this section we adopt the set of all spectral projections of a density operator
as a preferred observable in the generalized uniqueness theorem (Theorem 2.3).

Corollary 3.1. (Halvorson and Clifton, 1999, Corollary 4.6(i)) Let D be a
density operator on H, let D be the range of D and let ρ be the state on B(H) such
that ρ(A) = tr(DA) for any operator A ∈ B(H). Let P be the set of all spectral
projections of D. Let B be a C*-subalgebra of B(H) and let B satisfy the following
conditions:

1. B is a beable algebra for ρ;
2. P ⊆ B;
3. UBU ∗ = B for any unitary operator U ∈ B(H) such that U ∈ {D}′;
4. B is maximal with respect to conditions 1, 2 and 3.

Then B is B(D⊥) ⊕ {D}′′PD.

As easily seen, the set of all projections in B(D⊥) ⊕ {D}′′PD coincides with
the set (DefKD(W ) in Clifton (1995)) of all projections which have simultane-
ously definite values under the Kochen–Dieks modal interpretation. Therefore,
Corollary 3.1 can be regarded as one of the theorems that motivate the Kochen–
Dieks modal interpretation of quantum mechanics (cf. Clifton, 1995, Section 6
and Halvorson and Clifton, 1999, Remark 4.7).
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If we regard dispersion-free states on B(D⊥) ⊕ {D}′′PD as truth-value as-
signments, it is natural to think that for any dispersion-free state ω, ∨i∈NPi is
false (ω(∨i∈NPi) = 0) whenever all projections in a set {Pi |i ∈ N} of mutually
orthogonal projections in B(D⊥) ⊕ {D}′′PD are false (ω(Pi) = 0 for any i ∈ N).
If ω is a normal state, this holds. But when {D}′′PD contains a set {Pi |i ∈ N} of
mutually orthogonal countably infinite non-zero projections, there is a dispersion-
free state ω′ on B(D⊥) ⊕ {D}′′PD such that ω′(∨i∈NPi) = 1 and ω′(Pi) = 0
for any i ∈ N as shown below (Proposition 3.1). Then ∨i∈NPi is true and Pi

is false for any i ∈ N. Therefore, we cannot regard this state as a truth-value
assignment.

Lemma 3.1. Let A be an Abelian von Neumann algebra on H, let P be a non-
zero projection in A and let J0 be a proper ideal in A which does not contain P .
Then there is a dispersion-free state ω on A such that ω(P ) = 1 and ω(X) = 0
for any operator X ∈ J0.

Proof: Let J be the set of all proper ideals in A. Define J̄ as {J ∈ J |J0 ⊆
J and P �∈ J }. J̄ is partially ordered by set inclusion. Every linearly ordered
subset J̄ ′ of J̄ has an upper bound in J̄ because ∪J̄ ′ is a proper ideal such that
J0 ⊆ ∪J̄ ′ and P �∈ ∪J̄ ′. J̄ ′ is not empty because J0 ∈ J̄ ′. Zorn’s lemma implies
that J̄ has a maximal element J̄ .

Define ¯̄J as {J ∈ J |J̄ ⊆ J }. Similarly, we can show that ¯̄J has a maximal
element ¯̄J by Zorn’s lemma. Any proper ideal J ′ such that ¯̄J ⊆ J ′ contains J̄ , so
J ′ ∈ ¯̄J . Because ¯̄J is a maximal element of ¯̄J , J ′ = ¯̄J . Therefore, ¯̄J is a maximal
ideal in A.

We will show that J̄ = ¯̄J . Suppose that P ∈ ¯̄J . If P ⊥ ∈ ¯̄J , then I = P +
P ⊥ ∈ ¯̄J . This contradicts that ¯̄J is a proper ideal, so P ⊥ �∈ ¯̄J . Since J̄ ⊆ ¯̄J ,
P ⊥ �∈ J̄ . Define J1 as {AP ⊥ + B|A ∈ A and B ∈ J̄ }. J1 is an ideal and J̄ ⊂ J1.
Because J̄ is a maximal element of J̄ , J1 �∈ J̄ . Since J0 ⊂ J1, P ∈ J1. Then there
are A ∈ A and B ∈ J̄ such that P = AP ⊥ + B. Since B ∈ J̄ , P = BP ∈ J̄ . This
is a contradiction. Therefore, P �∈ ¯̄J . J0 ⊆ ¯̄J , so ¯̄J ∈ J̄ . Because J̄ ⊆ ¯̄J and J̄ is
a maximal element of J̄ , J̄ = ¯̄J .

By Exercise 4.6.29 (iii) of Kadison and Ringrose (1997), there is a dispersion-
free state ω on A such that J̄ = {A ∈ A|ω(A) = 0}. Therefore, ω(P ) = 1 and
ω(X) = 0 for any operator X ∈ J0. �

Proposition 3.1. Let K be a closed subspace of H and let A be an Abelian von
Neumann algebra on K which contains a set {Pi |i ∈ N} of mutually orthogonal
countably infinite non-zero projections. Then there is a dispersion-free state ω on
B(K⊥) ⊕ A such that ω(

∑
i∈N

Pi) = 1 and ω(Pk) = 0 for any k ∈ N.
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Proof: Let A
′′ be the von Neumann algebra on H which is generated by A.

Define

J0 :=
{
A ∈ A

′′|∃ finite elements Pi1 , . . . , Pin ∈ {Pi |i ∈ N},∀x ∈ H[
(Pi1 + . . . + Pin )x = 0 ∧

(∑
i∈N

Pi

)
x = x

]
→ Ax = 0

}
. (1)

Then J0 is a proper ideal of A
′′. Any projection Pk in {Pi |i ∈ N} be-

longs to J0 and
∑

i∈N
Pi does not belong to J0. By Lemma 1, there is a

dispersion-free state ω on A
′′ such that ω(

∑
i∈N

Pi) = 1 and ω(Pk) = 0 for any
k ∈ N.

By Theorem 4.3.13 (ii) of Kadison and Ringrose (1997), there is a state ω on
B(K⊥) ⊕ A which is an extension of ω0. Since

∑
i∈N

Pi ≤ PK, ω(P ⊥
K ) = 0. For

any operator B in B(K⊥), |ω(B)| = |ω(P ⊥
KBP ⊥

K )| ≤ ω(P ⊥
K )ω((BP ⊥

K )∗(BP ⊥
K )) =

0. Therefore, ω is a dispersion-free state on B(K⊥) ⊕ A. �

Although there is a dispersion-free state on B(D⊥) ⊕ {D}′′PD which is not
normal, the normal state tr(D·) on B(D⊥) ⊕ {D}′′PD can be expressed as a mixture
of dispersion-free normal states as shown below (Theorem 3.1).

Theorem 3.1. Let D be a density operator on H and let D be the range of
D. Define φ as the state on B(D⊥) ⊕ {D}′′PD such that φ(A) = tr(DA) for any
operator A in B(D⊥) ⊕ {D}′′PD. Let Sn be the set of all dispersion-free normal
states on B(D⊥) ⊕ {D}′′PD. Then φ is a mixture of dispersion-free states in Sn,
that is, there is a probability measure µ on Sn such that

φ(A) =
∫

Sn

ωs(A)dµ(s) (∀A ∈ B(D⊥) ⊕ {D}′′PD).

Proof: Let D = ∑
i diPi be the spectral resolution of D where {Pi} is the set of

spectral projections of D. Any non-zero spectral projection Pk of D is a minimal
projection of B(D⊥) ⊕ {D}′′PD and belongs to the center of B(D⊥) ⊕ {D}′′PD.
By Lemma 3.3 of Plymen (1968), a dispersion-free normal state ωk on B(D⊥) ⊕
{D}′′PD uniquely exists whose support is Pk . Since Pk ≤ PD, ωk(P ⊥

D ) = 0. Then
|ωk(B)| = |ωk(P ⊥

DBP ⊥
D )| ≤ ωk(P ⊥

D )ωk((BP ⊥
D )∗(BP ⊥

D )) = 0 for any operator B

in B(D⊥).
Any operator in B(D⊥) ⊕ {D}′′PD can be written as A0 ⊕ ∑

i aiPi where
A0 is an operator in B(D⊥), ai is a complex number and {Pi} is the set of
spectral projections of D. Since φ|{D}′′PD and ωi |{D}′′PD (∀i ∈ N) are weakly
continuous (Kadison and Ringrose, 1997, Exercise 7.6.4), φ(A0 ⊕ ∑

i aiPi) =
φ(

∑
i aiPi) = ∑

i aiφ(Pi) and
∑

i djωj (A0 ⊕ ∑
i aiPi) = ∑

j φ(Pj )ωj (A0 ⊕∑
i aiPi) = ∑

j φ(Pj )ωj (
∑

i aiPi) = ∑
j ajφ(Pj ). Therefore, φ = ∑

j djωj . �
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Due to Theorem 3.1, we can interpret the state φ as follows.

The ignorance interpretation of φ. Some dispersion-free state in Sn is the
real state. But because of our ignorance we cannot tell which state is real
and a probability measure on Sn represents a degree of our ignorance.

4. THE CASE WHERE A PREFERRED OBSERVABLE IS THE SET OF
ALL SPECTRAL PROJECTIONS OF THE POSITION OPERATOR

The position operator Q and its domain D(Q) on the Hilbert space L2(R) are
defined as

D(Q) =
{
f ∈ L2(R)|

∫
R

|xf (x)|2dx < ∞
}

(Qf )(x) = xf (x) (∀f ∈ D(Q)).

Let E(S) be a spectral projection of Q corresponding to a Borel set S.
In this section we adopt {E(S)|S is a Borel set} as a preferred observable in

the generalized uniqueness theorem (Theorem 2.3).

Corollary 4.1. Let D be a density operator on L2(R), let D be a range of D and
let ρ be the state on B(H) such that ρ(A) = tr(DA) for any operator A ∈ B(H).
Let P be {E(S)|S is a Borel set} and let S be [P′′D]. Let B be a C*-subalgebra of
B(H) and let B satisfy the following conditions:

1. B is a beable algebra for ρ;
2. P ⊆ B;
3. UBU ∗ = B for any unitary operator U ∈ B(H) such that U ∈ P

′ and
U ∈ {D}′;

4. B is a maximal with respect to conditions 1, 2 and 3.

Then B is B(S⊥) ⊕ P
′′PS .

Proof: Since S is invariant on P
′′, PS ∈ (P′′)′ (Kitajima, 2004, Lemma 4).

By Proposition 5.5.6 of Kadison and Ringrose (1997), (P′′PS )′ = PS (P′′)′PS =
(P′′)′PS . Because P

′′ is a maximal Abelian von Neumann algebra on H (Kadison
and Ringrose, 1997, Example 5.1.6), (P′′)′ = P

′′. Then (P′′PS )′ = P
′′PS , that is,

P
′′PS is a maximal Abelian von Neumann algebra on S. By Theorem 2.3, B is

B(S⊥) ⊕ P
′′PS . �

If D in Corollary 4.1 is H, then B is P
′′. We will examine such a case. Let

M be P
′′ and let SM be the set of all dispersion-free states on M.

The fact that there is no normal dispersion-free state on M was proved
in Proposition 1 of Halvorson (2001). It is also derived from the following
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proposition. We prove this proposition, making reference to the proof of The-
orem 1 of Ishigaki (2001).

Proposition 4.1. For any dispersion-free state ω on M there is a set {Si |i ∈ N}
of mutually disjoint Borel sets on R such that ω(E(∪∞

i=0Si)) = 1 and ω(E(Si)) = 0
for all i ∈ N.

Proof: Let ω be a dispersion-free state on M. Then

1 = ω(I ) = ω(E(R)) = ω(E(∪n∈Z[n, n + 1))).

If ω(E([n, n + 1))) = 0 for all n ∈ Z, the proof is completed. We will con-
sider the case where there is n0 ∈ Z such that ω(E([n0, n0 + 1))) = 1. We define
S0 as [n0, n0 + 1). Since ω(E([n0, n0 + 1))) = ω(E([n0, n0 + 1

2 ))) + ω(E([n0 +
1
2 , n0 + 1))), either ω(E([n0, n0 + 1

2 ))) or ω(E([n0 + 1
2 , n0 + 1))) equals to 1. We

define S1 = [λ1, λ1 + 1
2 ) as the set which satisfies ω(E(S1)) = 1 and is either

[n0, n0 + 1
2 ) or [n0 + 1

2 , n0 + 1). We define T1 as S0 \ S1. Then

S0 = S1 + T1, ω(E(S1)) = 1, ω(E(T1)) = 0.

Since ω(E(S1)) = ω(E([λ1, λ1 + 1
22 ))) + ω(E([λ1 + 1

22 , λ + 1
2 ))), either ω(E

([λ1, λ1 + 1
22 ))) or ω(E([λ1 + 1

22 , λ + 1
2 ))) equals to 1. We define S2 as the set

which satisfies ω(E(S2)) = 1 and is either [λ1, λ1 + 1
22 ) or [λ1 + 1

22 , λ1 + 1
2 ). We

define T2 as S1\S2. Then

S1 = S2 + T2, ω(E(S2)) = 1, ω(E(T2)) = 0.

When we repeat the similar operation, we get

Sk = Sk+1 + Tk+1 ω(E(Sk+1)) = 1 ω(E(Tk+1)) = 0

for any k ∈ N.
By the principle of successive division there is a real number µ such that

∩k∈NSk = {µ} or ∩k∈NSk is empty, so E(∩k∈NSk) = 0. Because S0 = ∑
k∈N

Tk +
∩k∈NSk , E(S0) = E(

∑
k∈N

Tk). Therefore, ω(E(
∑

k∈N
Tk)) = 1 and ω(E(Tk)) = 0

for all k ∈ N. �

If we interpret any spectral projection E(S) as the statement ‘a physical object
exists in S’ and any dispersion-free state ω on M as a truth-value assignment, there
is a Borel set ∪k∈NSk such that a physical object exists in ∪k∈NSk and a physical
object does not exist in Sk for any k ∈ N by Proposition 4.1. Therefore, we do not
interpret E(S) as a statement ‘a physical object exists in S’ and ω as a truth-value
assignment. Then we will not investigate how large a beable algebra containing P

can be. We take M as the beable algebra for any normal state on L2(R).
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Let Bf be the set of all bounded Borel sets of R. Define Sf and Si as

Sf := {ω ∈ SM|∃S ∈ Bf ω(E(S)) = 1},

Si := {ω ∈ SM|∀S ∈ Bf ω(E(S)) = 0}.
Then SM = Sf ∪ Si and Sf ∩ Si = ∅. Sf is not empty by Exercise 4.6.29 (iv) of
Kadison and Ringrose (1996). We will show that Si is not empty in Proposition 4.4.

For any point λ ∈ R, we define Sλ as

Sλ := {ω ∈ SM|∀ε > 0 ω(E((λ − ε, λ + ε))) = 1}.
We will show that Sλ is not empty for any λ ∈ R in Proposition 4.3.

Proposition 4.2. Sf = ⋃
λ∈R

Sλ and Sλ ∩ Sλ′ = ∅ when λ �= λ′.

Proof:
⋃

λ∈R
Sλ ⊆ Sf is trivial. We will show that Sf ⊆ ⋃

λ∈R
Sλ. Let ω be

any dispersion-free state which belongs to Sf . By the assumption, there is
a bounded closed set S such that ω (E (S)) = 1. Suppose that ∀λ ∈ S, ∃ελ >

0 ω (E ((λ − ελ, λ + ελ))) = 0. Because S ⊆ ∪λ∈S (λ − ελ, λ + ελ) and S is com-
pact, there are finite points λ1, . . . , λn such that S ⊆ ∪n

k=1(λk − ελk
, λk + ελk

).
Then

1 = ω (E (S)) = ω
(
E

( ∪n
k=1 (λk − ελk

, λk + ελk
)
))

(2)

≤ ω

( n∑
k=1

E((λk − ελk
, λk + ελk

))

)
=

n∑
k=1

ω(E((λk − ελk
, λk + ελk

))) = 0.

This is a contradiction, so ∃λ ∈ S,∀ε > 0 ω (E ((λ − ε, λ + ε))) = 1. There-
fore, Sf ⊆ ⋃

λ∈R
Sλ.

Suppose that there are two points λ and λ′ such that λ �= λ′ and Sλ ∩ Sλ′ �= ∅,
then there is a dispersion-free state ω in Sλ ∩ Sλ′ such that ω (E ((λ − ε, λ + ε))) =
1, ω(E((λ′ − ε, λ′ + ε))) = 1 and (λ − ε, λ + ε) ∩ (λ′ − ε, λ′ + ε) = ∅ for some
real number ε > 0. Since ω(E((λ − ε, λ + ε))) = 1, ω

(
E

((
λ′ − ε, λ′ + ε

))) = 0.
This is a contradiction. Therefore, Sλ ∩ Sλ′ = ∅ when λ �= λ′. �

Proposition 4.2 shows that there is a point λ ∈ R such that Sλ �= ∅. But it
does not show whether Sλ is empty or not for any λ ∈ R. Halvorson showed that
there are countably infinite dispersion-free states in Sλ for any λ ∈ R (Halvorson,
2001, Proposition 2). We prove it in another way.

Lemma 4.1. For any point λ ∈ R there is a set {Sk|k ∈ N} of mutually disjoint
sets such that for any k ∈ N, λ belongs to a closure of Sk and Sk ⊂ (λ, λ + 1).
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Proof: We will prove the case where λ = 0. Define

Sk :=
⋃
n∈N

(
2k + 1

22n+k
,

2k + 2

22n+k

)
(∀k ∈ N).

0 belongs to a closure of Sk for any k ∈ N because 2k+(3/2)
22n+k belongs to Sk for any

k, n ∈ N and limn→∞ 2k+(3/2)
22n+k = 0. Sk is contained in (0, 1).

We will show that Sk ∩ Sk′ = ∅ when k �= k′. We assume that k < k′. Because

Sk ∩ Sk′ = ∪n∈N ∪n′∈N

((
2k + 1

22n+k
,

2k + 2

22n+k

)
∩

(
2k′ + 1

22n′+k′ ,
2k′ + 2

22n′+k′

))
,

it is sufficient to show that(
2k + 1

22n+k
,

2k + 2

22n+k

)
∩

(
2k′ + 1

22n′+k′ ,
2k′ + 2

22n′+k′

)
= ∅

for any n, n′ ∈ N.
When n ≤ n′,

2k + 1

22n+k
− 2k′ + 2

22n′+k′ ≥ 2k + 1

22n′+k
− 2k′ + 2

22n′+k′ (... n′ ≥ n)

= 2k′−k − 2

22n′+k′ ≥ 0 (... k′ − k ≥ 1). (3)

When n > n′,

2k′ + 1

22n′+k′ − 2k + 2

22n+k
= 22(n−n′)(1 + 2−k′

) − 1 − 2−k+1

22n

≥ 22(1 + 2−k′
) − 1 − 20

22n
(... n − n′ ≥ 1, k ≥ 1)

= 2−k′+2 + 2

22n
> 0. (4)

Therefore, Sk ∩ Sk′ = ∅ when k �= k′. �

For any λ ∈ R we define

Sλ,+ := {ω ∈ Sλ|∀ε > 0 ω(E((λ, λ + ε))) = 1},

Sλ,− := {ω ∈ Sλ|∀ε > 0 ω(E((λ − ε, λ))) = 1}.
Then Sλ = Sλ,+ ∪ Sλ,− and Sλ,+ ∩ Sλ,− = ∅.
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Proposition 4.3. Let λ be any point in R. The power ℵλ,+ of Sλ,+ and the power
ℵλ,− of Sλ,− are greater than or equal to ℵ0.

Proof: Let λ be any point in R. By Lemma 4.1 there is a set {Sk|k ∈ N} of
mutually disjoint sets such that λ belongs to a closure of Sk and Sk ⊂ (λ, λ + 1)
for any k ∈ N. Let Si be any set in {Sk|k ∈ N}. Define

J0 := {X ∈ M|∃ε > 0,∀f ∈ L2(R) [E((λ − ε, λ + ε) ∩ Si)f = f → Xf = 0]}.
J0 is a proper ideal in M. E(Si) �∈ J0 and E((λ − ε, λ + ε)c) ∈ J0 for any ε > 0.
By Lemma 3.1 there is a dispersion-free state ωi on M such that ωi(E(Si)) = 1 and
ωi(E((λ − ε, λ + ε))) = 1 for any ε > 0. Because ωi(E(Sc

i )) = 0, ωi(E(Sk)) = 0
when i �= k. Since ωi(E(Si)) = 1, ωi ∈ Sλ,+. Therefore, ℵλ,+ ≥ ℵ0.

Similarly, we can prove that ℵλ,− ≥ ℵ0. �

Next we examine whether Si is empty or not.

Proposition 4.4. The power ℵi of Si satisfies ℵi ≥ 2ℵ0 .

Proof: Let λ be a real number contained in [0, 1) and let Bf be a set of all
bounded Borel sets. Define

Jλ : = {X ∈ M|∃S ∈ Bf , ∃ε ∈ (0, 1),∀f ∈ L2(R)

[E(S ∪ (∪n∈Z[λ + 2n + 1 − ε, λ + 2n + 1 + ε]))f = 0 → Xf = 0]}.
(5)

Jλ is a proper ideal. E(S) ∈ Jλ for any bounded Borel set S and E(∪n∈Z[λ + 2n +
1 − ε, λ + 2n + 1 + ε]) ∈ Jλ for any real number ε ∈ (0, 1).

By Lemma 3.1 there is a dispersion-free state ωλ on M such that
ωλ(X) = 0 for any operator X ∈ Jλ. Then ωλ(E(S)) = 0 for any bounded Borel
set S. Because (∪n∈Z[λ + 2n + 1 − ε, λ + 2n + 1 + ε])c = ∪n∈Z(λ + 2n − (1 −
ε), λ + 2n + (1 − ε)), ωλ(E(∪n∈Z(λ + 2n − ε, λ + 2n + ε))) = 1 for any real
number ε ∈ (0, 1).

Similarly, for any real number λ′ ∈ [0, 1) which is not λ there is a
dispersion-free state ωλ′ such that ωλ′(E(S)) = 0 for any bounded Borel set S

and ωλ′(E(∪n∈Z(λ′ + 2n − ε, λ′ + 2n + ε))) = 1 for any real number ε ∈ (0, 1).
There is a real number ε′ ∈ (0, 1) such that (∪n∈Z(λ + 2n − ε′, λ + 2n + ε′)) ∩
(∪n∈Z(λ′ + 2n − ε′, λ′ + 2n + ε′)) = ∅. ωλ �= ωλ′ because ωλ′ (E(∪n∈Z(λ + 2n −
ε′, λ + 2n + ε′))) = 0 and ωλ(E(∪n∈Z(λ + 2n − ε′, λ + 2n + ε′))) = 1. There-
fore, ℵi ≥ 2ℵ0 . �

Although Si is not empty, the following fact holds.
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Theorem 4.1. Let ψ be any normal state on M. ψ is a mixture of dispersion-free
states in

⋃
λ∈R

Sλ, that is, there is a probability measure µ on
⋃

λ∈R
Sλ such that

ψ(A) =
∫

⋃
λ∈R

Sλ

ωs(A)dµ(s) (∀A ∈ M).

Proof: Let {Sk|k ∈ N} be a set of bounded Borel sets such that R = ⋃∞
k=1 Sk

and Sj ∩ Sk = ∅ when j �= k. When X is any operator in M, X = XE(∪∞
k=1Sk) =

X(
∑∞

k=1 E(Sk)) = ∑∞
k=1(XE(Sk)). Since there is a probability measure µ on the

space SM on the dispersion-free state on M such that

ψ(A) =
∫

S
M

ωs(A)dµ(s) (∀A ∈ M)

by Proposition 2.2 of Halvorson and Clifton (1999) and ψ is weakly continuous
(Kadison and Ringrose, 1997, Exercise 7.6.4 (i)),

ψ(X) =
∞∑

k=1

ψ(XE(Sk)) =
∞∑

k=1

∫
S
M

ωs(XE(Sk))dµ(s).

Because

∞∑
k=1

∫
S
M

|ωs(XE(Sk))|dµ(s) =
∞∑

k=1

∫
S
M

√
ωs(XE(Sk))ωs(XE(Sk))dµ(s)

=
∞∑

k=1

∫
S
M

√
ωs((XE(Sk))∗)ωs(XE(Sk))dµ(s)

=
∞∑

k=1

∫
S
M

√
ωs((

√
X∗XE(Sk))2)dµ(s) (6)

=
∞∑

k=1

∫
S
M

ωs(
√

X∗XE(Sk))dµ(s)

=
∞∑

k=1

ψ(
√

X∗XE(Sk))

= ψ(
√

X∗X) < ∞,

ψ(X) =
∫

S
M

∞∑
k=1

ωs(XE(Sk))dµ(s) =
∫

S
M

∞∑
k=1

(ωs(X)ωs(E(Sk)))dµ(s).
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If ωs(E(Sk)) = 0 for any k ∈ N, then
∑∞

k=1(ωs(X)ωs(E(Sk))) = 0. If
ωs(E(Si)) = 1 for some i ∈ N,

∑∞
k=1(ωs(X)ωs(E(Sk))) = ωs(X). Therefore, ψ

is a mixture of Sf . By Proposition 4.2, ψ is a mixture of
⋃

λ∈R
Sλ. �

Due to Theorem 4.1, we can interpret the state ψ as follows.

The ignorance interpretation of ψ . Some dispersion-free state in
⋃

λ∈R
Sλ is the

real state. But because of our ignorance we cannot tell which state is real and a
probability measure on

⋃
λ∈R

Sλ represents a degree of our ignorance.

Although Si is not empty (Proposition 4.4), we will examine the interpretation
of those dispersion-free states in

⋃
λ∈R

Sλ.
Let ω be a dispersion-free state in

⋃
λ∈R

Sλ. When K is a density operator,
tr(KE(S)) is interpreted as the probability that a physical object is detected in
a region S. We interpret ω(E(S)) in the same way. But ω is not a normal state
(Proposition 4.1) while tr(K·) is a normal state. Then we restrict regions in which
a physical object can be measured to finitely additive class F generated by the set
of all open intervals in R. For example, sets defined in the proof of Lemma 4.1
cannot be regarded as regions in which a physical object can be measured. This
restriction excludes these sets from the set of regions in which a physical object
can be measured.

The interpretation on measurements of a physical object. Let ω be any dispersion-
free state in

⋃
λ∈R

Sλ and F be any set in F . ω(E(F )) is a probability that a
physical object is detected in the region F .

Let ωλ,+ and ω′
λ,+ be different dispersion-free states in Sλ,+. Since

ωλ,+(E((a, b))) = ω′
λ,+(E((a, b))) for any open interval (a, b), ωλ,+(E(F )) =

ω′
λ,+(E(F )) for any set F in F by mathematical induction. Therefore, no mea-

surement can distinguish ωλ,+ from ω′
λ,+.

It is natural to think that a physical object exists at a point λ when a proba-
bility that a physical object is detected in (λ − ε, λ + ε) is 1 for any real number
ε > 0.

The interpretation on the existence of a physical object. Let ω be any dispersion-
free state in

⋃
λ∈R

Sλ. ω belongs to Sλ if and only if a physical object exists at
a point λ.

Let ωλ,+ be a dispersion-free state in Sλ,+ and let ωλ,− be a dispersion-free
state in Sλ,−. ωλ,+ and ωλ,− are the same state in terms of the existence of a
physical object although ωλ,+(E((λ − ε, λ))) �= ωλ,−(E((λ − ε, λ))) for any real
number ε > 0.
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5. SUMMARY

We have examined whether dispersion-free states on beable algebras in the
generalized uniqueness theorem can be regarded as truth-value assignments in the
case where a preferred observable is the set of all spectral projections of a density
operator, and in the case where a preferred observable is the set of all spectral
projections of the position operator as well.

If a preferred observable in Theorem 2.3 is the set of all spectral projections
of a density operator D, B in Theorem 2.3 is B(D⊥) ⊕ {D}′′PD (Corollary 3.1).
When {D}′′PD contains a set {Pi |i ∈ N} of mutually orthogonal countably infinite
non-zero projections, there is a dispersion-free state ω′ on B(D⊥) ⊕ {D}′′PD such
that ω′(∨i∈NPi) = 1 and ω′(Pi) = 0 for any i ∈ N (Proposition 3.1). If we interpret
this state as a truth-value assignment, ∨i∈NPi is true and Pi is false for any i ∈ N.
Therefore, we cannot regard this state as a truth-value assignment. But a normal
state tr(D·) on B(D⊥) ⊕ {D}′′PD can be expressed as a mixture of dispersion-free
normal states (Theorem 3.1). Due to this theorem, we can interpret that some
dispersion-free normal state which can be regarded as truth-value assignment is
the real state.

If a preferred observable in Theorem 2.3 is the set {E(S)|S is a Borel set}
of all spectral projections of the position operator, B in Theorem 2.3 is
{E(S)|S is a Borel set}′′ in the case where D = H (Corollary 4.1). Let M be
{E(S)|S is a Borel set}′′. If we interpret a dispersion-free state on M as a truth-
value assignment, there is a set {Si |i ∈ N} of Borel sets such that a physical object
exists in ∪i∈NSi and does not exist in Si for any i ∈ N (Proposition 4.1). There-
fore, we cannot regard any dispersion-free state on M as a truth-value assignment.
Then we interpret ω(E(S)) as a probability that a physical object is detected in
S where ω is a dispersion-free state on M and E(S) is a spectral projection of
the position operator. If we interpret a dispersion-free state in Si as real, ω(E(S ′))
is the probability that a physical object is detected in S ′ for any finite region S ′.
Then the probability that a physical object is detected in any finite region is 0.
Therefore, this state cannot be regarded as real. Although Si is not empty (Propo-
sition 4.4), any normal state on M can be expressed as a mixture of dispersion-free
states in

⋃
λ∈R

Sλ (Theorem 4.1). Then we can regard some dispersion-free state
in

⋃
λ∈R

Sλ as real. Under this interpretation a physical object exists at some point.
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